(Euler 7) 10001. Asal Sayı
İlk 6 asal sayıyı listelersek: 2, 3, 5, 7, 11, ve 13, 6. asal sayının 13 olduğunu görürüz.
10001'inci asal sayı kaçtır.
Euler-7 Silinmiş Sahneler yazısını okuduysanız, asal sayılar konusunun dipsiz bir kuyu olduğunu anlamışsınızdır. Bu nedenle bu yazıda, ilk akla gelen yöntemle, Eratosten kalburu yöntemini çalışma süresi açısından karşılaştırıp, yazıyı tamamlayacağım. Öncelikle, sırasıyla sayıların asallığını kontrol edip, 10001 adet asal sayı bulan fonksiyona bakalım. Çift sayılar asal sayı olamayacağı için, sadece tek sayıları kontrol edeceğiz. Bir sayıyı, yarısına eşit veya küçük asal sayılara kalansız bölünmüyorsa, asal sayı olarak kabul edeceğiz.
Basit ve işlevsel oldu. euler7_basit(10001)
şeklinde bir çağrı ile sonuca erişebiliyoruz. Tabi ki, Eratosten kalburunu
burada bir yerde mutlaka kullanacağız. Yalnız, 3. Euler Problemi yazısında
kullandığımız basit_sieve
, anlaşılır olması açısından, algoritmanın aslından biraz uzaklaşmıştı. Önce, bu fonksiyonu teknik
olarak doğru olacak şekilde tekrar yazalım.
Güzeliz. Şimdi iki yöntemi birleştirelim. Belirli bir sayıya kadar olan asal sayıları basit_sieve2
ile tespit edip, eksik
kalan sayıdaki asalları ise eski yöntemle tamamlayabiliriz. Peki, basit_sieve2
yöntemini hangi sayıya kadar çalıştıracağız?
Eğer elde etmek istediğimiz asal sayı sayısına \(x\) dersek, \(x * \log(x)\) iyi bir başlangıç gibi görünüyor.
İki yöntem de bir hayli hızlı sonuç veriyor. Bu iki versiyonu yüzer kere çalıştırdığımda, ilk versiyon 5.52 saniyede tamamlanırken, ikinci versiyon 1.2 saniyede tamamlanıyor. Mesele asal sayılarsa, genellikle eratosten kalburu ilk akla gelen çözüm olmalı. Her ne kadar bu fonksiyonumuz üzerine koyulabilecek şeyler olsa da, sadece 7. problemde olduğumuzu hatırlayıp, abartmamak gerekir diye düşünüyorum.
Gelecek Problem
Belirtilen 1000 haneli sayıda, çarpımları en büyük olan 4 ardışık rakam 9 x 9 x 9 x 9 = 5832'dir
73167176531330624919225119674426574742355349194934 96983520312774506326239578318016984801869478851843 85861560789112949495459501737958331952853208805511 12540698747158523863050715693290963295227443043557 66896648950445244523161731856403098711121722383113 62229893423380308135336276614282806444486645238749 30358907296290491560440772390713810515859307960866 70172427121883998797908792274921901699720888093776 65727333001053367881220235421809751254540594752243 52584907711670556013604839586446706324415722155397 53697817977846174064955149290862569321978468622482 83972241375657056057490261407972968652414535100474 82166370484403199890008895243450658541227588666881 16427171479924442928230863465674813919123162824586 17866458359124566529476545682848912883142607690042 24219022671055626321111109370544217506941658960408 07198403850962455444362981230987879927244284909188 84580156166097919133875499200524063689912560717606 05886116467109405077541002256983155200055935729725 71636269561882670428252483600823257530420752963450
Çarpımları en büyük olan 13 ardışık rakamı bulunuz. Bu çarpım kaçtır?